Dynamic Patterning Programmed by DNA Tiles Captured on a DNA Origami Substrate

نویسندگان

  • Hongzhou Gu
  • Jie Chao
  • Shou-Jun Xiao
  • Nadrian C. Seeman
چکیده

The aim of nanotechnology is to put specific atomic and molecular species where we want them, when we want them there. Achieving such dynamic and functional control could lead to programmable chemical synthesis and nanoscale systems that are responsive to their environments. Structural DNA nanotechnology offers a powerful route to this goal by combining stable branched DNA motifs with cohesive ends to produce programmed nanomechanical devices and fixed or modified patterned lattices. Here, we demonstrate a dynamic form of patterning in which a pattern component is captured between two independently programmed DNA devices. A simple and robust error-correction protocol has been developed that yields programmed targets in all cases. This capture system can lead to dynamic control either on patterns or on programmed elements; this capability enables computation or a change of structural state as a function of information in the surroundings of the system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular ping-pong Game of Life on a two-dimensional DNA origami array.

We propose a design for programmed molecular interactions that continuously change molecular arrangements in a predesigned manner. We introduce a model where environmental control through laser illumination allows platform attachment/detachment oscillations between two floating molecular species. The platform is a two-dimensional DNA origami array of tiles decorated with strands that provide bo...

متن کامل

Programming Self-Assembly of DNA Origami Honeycomb Two-Dimensional Lattices and Plasmonic Metamaterials.

Scaffolded DNA origami has proven to be a versatile method for generating functional nanostructures with prescribed sub-100 nm shapes. Programming DNA-origami tiles to form large-scale 2D lattices that span hundreds of nanometers to the micrometer scale could provide an enabling platform for diverse applications ranging from metamaterials to surface-based biophysical assays. Toward this end, he...

متن کامل

Metallized DNA nanolithography for encoding and transferring spatial information for graphene patterning.

The vision for graphene and other two-dimensional electronics is the direct production of nanoelectronic circuits and barrier materials from a single precursor sheet. DNA origami and single-stranded tiles are powerful methods to encode complex shapes within a DNA sequence, but their translation to patterning other nanomaterials has been limited. Here we develop a metallized DNA nanolithography ...

متن کامل

Controlled Nucleation and Growth of DNA Tile Arrays within Prescribed DNA Origami Frames and Their Dynamics

Controlled nucleation of nanoscale building blocks by geometrically defined seeds implanted in DNA nanoscaffolds represents a unique strategy to study and understand the dynamic processes of molecular self-assembly. Here we utilize a two-dimensional DNA origami frame with a hollow interior and selectively positioned DNA hybridization seeds to control the self-assembly of DNA tile building block...

متن کامل

DNA-Origami-Aided Lithography for Sub-10 Nanometer Pattern Printing

We report the first DNA-based origami technique that can print addressable patterns on surfaces with sub-10 nm resolution. Specifically, we have used a two-dimensional DNA origami as a template (DNA origami stamp) to transfer DNA with pre-programmed patterns (DNA ink) on gold surfaces. The DNA ink is composed of thiol-modified staple strands incorporated at specific positions of the DNA origami...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009